Matematika Dasar Transformasi Geometri (👊 Soal Dari Berbagai Sumber 👊)
Jenis Transformasi
- Translasi (Pergeseran)
- Refleksi (Pencerminan)
- Rotasi (Perputaran)
- Dilatasi Perkalian
1. Translasi (Pergeseran)
Translasi (Pergeseran) merupakan transformasi isometri dari setiap titik dengan jarak dan arah yang tetap.Jika titik $A(x,y)$ ditranslasi sejauh $T=\begin{pmatrix}
a \\b
\end{pmatrix}$ maka bayangan yang dihasilkan adalah $A'\left( x',y' \right)$.
$\left( x',y' \right)=T+(x,y)=\left( x+a,x+b \right)$
$\left( x',y' \right)= \begin{pmatrix}
a \\b
\end{pmatrix}+(x,y)=\left( x+a,x+b \right)$
2. Refleksi (Pencerminan)
Refleksi (Pencerminan) merupakan suatu transformasi yang memindahkan setiap titik pada suatu bidang dengan menggunakan sifat-sifat bayangan pada suatu cermin.Beberapa pencerminan yang mungkin dapat dilakukan terhadap sebuah objek, diantaranya adalah:
- Jika titik $A(x,y)$ dicerminkan terhadap sumbu-$X$ ($y=0$) maka bayangan yang dihasilkan adalah $A'\left( x,-y \right)$.
Dengan menggunakan matriks:
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix}$ - Jika titik $A(x,y)$ dicerminkan terhadap garis $y=k$ maka bayangan yang dihasilkan adalah $A'\left( x,2k-y \right)$.
Dengan menggunakan matriks,
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix}+\begin{pmatrix}
0\\2k
\end{pmatrix}$ - Jika titik $A(x,y)$ dicerminkan terhadap sumbu-$Y$ ($x=0$) maka bayangan yang dihasilkan adalah $A'\left( -x,y \right)$.
Dengan menggunakan matriks,
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix}$ - Jika titik $A(x,y)$ dicerminkan terhadap garis $x=k$ maka bayangan yang dihasilkan adalah $A'\left( 2k-x,y \right)$.
Dengan menggunakan matriks,
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix}+\begin{pmatrix}
2k\\0
\end{pmatrix}$ - Jika titik $A(x,y)$ dicerminkan terhadap titik pusat $(0,0)$ maka bayangan yang dihasilkan adalah $A'\left( -x,-y \right)$.
Dengan menggunakan matriks,
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix}$ - Jika titik $A(x,y)$ dicerminkan terhadap titik $(a,b)$ maka bayangan yang dihasilkan adalah $A'\left( 2a-x,2b-y \right)$.
Dengan menggunakan matriks,
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix}+\begin{pmatrix}
2a\\2b
\end{pmatrix}$ - Jika titik $A(x,y)$ dicerminkan terhadap garis $y=x$ maka bayangan yang dihasilkan adalah $A'\left( y,x \right)$
Dengan menggunakan matriks,
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix}$ - Jika titik $A(x,y)$ dicerminkan terhadap garis $y=-x$ maka bayangan yang dihasilkan adalah $A'\left( -y,-x \right)$
Dengan menggunakan matriks,
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
0 & -1\\
-1 & 0
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix}$
3. Rotasi (Perputaran)
Rotasi (Perputaran) sebuah titik atau beberapa titik ditentukan oleh pusat rotasi $P(a,b)$ dan besar sudut rotasi ($\theta$).- Jika titik $A(x,y)$ dirotasi sejauh $\theta$ dengan pusat $(0,0)$ maka bayangan yang dihasilkan adalah $A'(x',y')$ dimana
$x'= \left (x\ cos\ \theta-y\ sin\ \theta \right )$
$y'= \left (x\ sin\ \theta+y\ cos\ \theta \right )$
Dengan menggunakan matriks,
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
cos\ \theta & - sin\ \theta\\
sin\ \theta & cos\ \theta
\end{pmatrix}\begin{pmatrix}
x \\y
\end{pmatrix}$ - Jika titik $A(x,y)$ dirotasi sejauh $\theta$ dengan pusat $(a,b)$ maka bayangan yang dihasilkan adalah $A'(x',y')$ dimana
$x'= \left (x\ cos\ \theta-y\ sin\ \theta \right )+\left (a\ sin\ \theta-b\ cos\ \theta \right )+a$
$y'= \left (x\ sin\ \theta+y\ cos\ \theta \right )-\left (b\ cos\ \theta+a\ sin\ \theta \right )+b$
Dengan menggunakan matriks,
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
cos\ \theta & - sin\ \theta\\
sin\ \theta & cos\ \theta
\end{pmatrix}\begin{pmatrix}
x-a\\y-b
\end{pmatrix}+\begin{pmatrix}
a\\ b
\end{pmatrix}$
4. Dilatasi (Perkalian)
Dilatasi (Perkalian) adalah transformasi yang mengubah ukuran (diperbesar atau diperkecil) suatu bangun yang sebangun.- Jika titik $A(x,y)$ dilatasi dengan faktor skala $k$ dan pusat $(0,0)$ maka bayangan yang dihasilkan adalah $A'(kx,ky)$
Dengan menggunakan matriks,
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
k & 0\\
0 & k
\end{pmatrix}\begin{pmatrix}
x \\y
\end{pmatrix}$ - Jika titik $A(x,y)$ dilatasi dengan faktor skala $k$ dan pusat $(a,b)$ maka bayangan yang dihasilkan adalah $A'(x',y')$ dimana
$x'= k\left (x-a \right )+a$
$y'= k\left (y-b \right )+b$
Dengan menggunakan matriks,
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
k & 0\\
0 & k
\end{pmatrix}\begin{pmatrix}
x-a\\y-b
\end{pmatrix}+\begin{pmatrix}
a\\ b
\end{pmatrix}$
Catatan tambahan untuk dilatasi
- Jika bangun datar $A$ didilatasi dengan skala $k$ dan pusat $O(0,0)$ menjadi bangun datar $A'$, maka berlaku:
Luas bangun datar $A$=$m^{2} \times$ luas bangun datar $A$. - Luas segitiga $ABC$ dimana $A(x_{1},y_{1})$, $B(x_{2},y_{2})$, $C(x_{3},y_{3})$ adalah $ \dfrac{1}{2}\begin{vmatrix}
1 & x_{1} & y_{1}\\
1 & x_{2} & y_{2}\\
1 & x_{3} & y_{3}
\end{vmatrix}$ - Luas benda hasil transformasi adalah $\left | det\ T \right | \times \text{Luas Benda Asal}$
Komposisi Transformasi
Jika $T_{1}$ adalah suatu transformasi yang memetakan obyek $A(x,y)$ ke obyek lain $A'$, kemudian dilanjutkan oleh transformasi $T_{2}$ obyek $A'$ dipetakan ke obyek $A''(x'',y'')$ secara umum dapat dituliskan sebagai berikut:- Bayangan hasil komposisi transformasi Translasi
$A''=T_{2}+T_{1}+A$
$\begin{pmatrix}
x''\\ y''
\end{pmatrix}=T_{2}+T_{1}+\begin{pmatrix}
x \\ y
\end{pmatrix}$
- Bayangan hasil komposisi transformasi Refleksi, Rotasi dan Dilatasi
$A''=T_{2} \cdot T_{1} \cdot A$
$\begin{pmatrix}
x''\\ y''
\end{pmatrix}=T_{2} \cdot T_{1} \cdot \begin{pmatrix}
x \\ y
\end{pmatrix}$
1. Soal UNBK Matematika IPA 2018 (👊 Soal Lengkap 👊)
Segitiga $ABC$ dengan koordinat titik sudut $A(2,-1)$, $B(6,-2)$, dan $C(5,2)$ dirotasi sejauh $180^{\circ}$ dengan pusat $(3,1)$. Bayangan koordinat titik sudut segitiga $ABC$ adalah...
$(A)\ A(4,3),\ B(0,4),\ C(1,0)$
$(B)\ A(3,4),\ B(4,0),\ C(0,1)$
$(C)\ A(-4,3),\ B(0,-4),\ C(-1,0)$
$(D)\ A(-4,-3),\ B(0,-4),\ C(-1,0)$
$(E)\ A(-4,-3),\ B(0,4),\ C(1,1)$
Bayangan titik $(x,y)$yang di rotasi dirotasi sejauh $\theta$ dengan pusat $(a,b)$ kita tentukan dengan matriks;
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
cos\ \theta & -sin\ \theta\\
sin\ \theta & cos\ \theta
\end{pmatrix}\begin{pmatrix}
x-a\\
y-b
\end{pmatrix}+\begin{pmatrix}
a\\
b
\end{pmatrix}$
Bayangan titik $(x,y)$ sudut segitiga yang di rotasi dirotasi sejauh $180^{\circ}$ dengan pusat $(3,1)$ adalah;
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
cos\ 180 & -sin\ 180\\
sin\ 180 & cos\ 180
\end{pmatrix}\begin{pmatrix}
x-3\\
y-1
\end{pmatrix}+\begin{pmatrix}
3\\
1
\end{pmatrix}$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x-3\\
y-1
\end{pmatrix}+\begin{pmatrix}
3\\
1
\end{pmatrix}$
Bayangan titik $A(2,-1)$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
2-3\\
-1-1
\end{pmatrix}+\begin{pmatrix}
3\\
1
\end{pmatrix}$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
-1\\
-2
\end{pmatrix}+\begin{pmatrix}
3\\
1
\end{pmatrix}$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
1+3\\
2+1
\end{pmatrix}=\begin{pmatrix}
4\\
3
\end{pmatrix}$
Dengan cara yang sama bayangan titik $B(6,-2)$ adalah $B'(0,4)$ dan bayangan titik $C(5,2)$ adalah $C'(1,0)$
*Alternatif: dirotasi sejauh $180^{\circ}$ dengan pusat $(a,b)$, sama juga dengan direfleksi dengan pusat $(a,b)$
$\therefore$ Pilihan yang sesuai adalah $(A)\ A(4,3),\ B(0,4),\ C(1,0)$
2. Soal Simulasi UNBK Matematika IPA 2019 (👊 Soal Lengkap 👊)
Persamaan bayangan garis $y=x+1$ ditransformasikan oleh matriks $ \begin{pmatrix}
1 & 2\\
0 & 1
\end{pmatrix}$, dilanjutkan dengan pencerminan terhadap sumbu $X$ adalah...
$(A)\ x+y-3=0$
$(B)\ x-y-3=0$
$(C)\ 3x+y+3=0$
$(D)\ x+3y+1=0$
$(E)\ 3x+y+1=0$
Matriks Transformasi, $T_{1}:\begin{pmatrix}
1 & 2\\
0 & 1
\end{pmatrix}$
Matriks Transformasi terhadap sumbu $X$, $T_{2}: \begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}$.
Garis ditransformasikan oleh $T_{1}$ dilanjutkan $T_{2}$.
$ \begin{pmatrix}
x'\\
y'
\end{pmatrix}$=$M_{T_{2}} \cdot M_{T_{1}} \cdot \begin{pmatrix}
x\\
y
\end{pmatrix}$
$ \begin{pmatrix}
x'\\
y'
\end{pmatrix}$=$ \begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix} \cdot \begin{pmatrix}
1 & 2\\
0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
x\\
y
\end{pmatrix}$
Jika kurang paham perkalian matriks silahkan dicoba Matematika Dasar: Belajar Penjumlahan, Pengurangan dan Perkalian Matriks
$ \begin{pmatrix}
x'\\
y'
\end{pmatrix}$=$ \begin{pmatrix}
1 & 2\\
0 & -1
\end{pmatrix} \begin{pmatrix}
x\\
y
\end{pmatrix}$
$ \begin{pmatrix}
x'\\
y'
\end{pmatrix}= \begin{pmatrix}
x+2y\\
-y
\end{pmatrix}$
dari kesamaan dua matriks diatas kita peroleh;
- $y'=-y$ maka $y=-y'$
- $x'=x+2y$ maka $x=x'+2y'$
Nilai $x$ dan $y$ kita substitusi ke persamaan garis;
$\begin{align}
y & = x+1 \\
-y' & = x'+2y'+1 \\
0 & = y'+x'+2y'+1 \\
3y'+x' +1 & = 0
\end{align}$
Persamaan garis adalah $3y'+x'+1=0$ dengan menghilangkan tanda aksen $(')$, tanda aksen $(')$ menyimbolkan bahwa garis adalah hasil transformasi.
$\therefore$ Pilihan yang sesuai adalah $(D)\ x+3y+1=0$
3. Soal OSK Matematika SMP 2018 (👊 Soal Lengkap 👊)
Perhatikan gambar berikut ini:
Persamaan garis hasil transformasi $R[0,180^{\circ}]$ dilanjutkan dengan pencerminan $y =-x$ terhadap garis $AB$ adalah...
$(A).\ y=2x+4$
$(B).\ y=2x-4$
$(C).\ y=-2x+4$
$(D).\ y=-2x-4$
Garis pada gambar melalui dua titik yaitu, $(0,2)$ dan $(4,4)$ maka persamaan garis yang terbentuk adalah:
\begin{align} \frac{y-y_{1}}{y_{2}-y_{1}} & = \frac{x-x_{1}}{x_{2}-x_{1}} \\
\frac{y-2}{4-2} & = \frac{x-0}{4-0} \\
\frac{y-2}{2} & = \frac{x}{4} \\
4y-8 & = 2x \\
2y-x-4 & = 0 \end{align}
Jika $(x,y)$ dirotasi dengan $R[0,180^{\circ}]$ maka bayangannya adalah:
$(x′,y′)=(-x,-y)$ $\Rightarrow$ $x′=-x$ dan $y′=-y$.
Jika $(x′,y′)$ dicerminkan terhadap garis $y=-x$ maka bayangannya adalah:
$(x′′,y′′)=(-y′,-x′)$ $\Rightarrow$ $x′′=-y′$ dan $y′′=-x′$.
Hasil rotasi dan pencerminan diatas kita substitusi ke persamaan garis;
\begin{align} 2y-x-4 & = 0 \\
2(-y′)-(-x′)-4 & = 0 \\
-2y′+x′-4 & = 0 \\
-2(-x′′)+(-y′′)-4 & = 0 \\
2x′′-y′′-4 & = 0 \end{align}
Arti double aksen $(′′)$ pada persamaan garis diatas adalah menyimbolkan bayangan garis setelah dua kali di transformasikan. Persamaan bayangan garis setelah ditransformasikan adalah dengan menghilangkan tanda double aksen $(′′)$ yaitu $2x-y-4 = 0$
$\therefore$ Pilihan yang sesuai adalah $(B).\ y=2x-4$
4. Soal UN Matematika IPA 2017 (👊 Soal Lengkap 👊)
Persamaan bayangan garis $y=3x+2$ oleh transformasi yang bersesuaian dengan matriks $ \begin{pmatrix}
1 & 2\\
0 & 1
\end{pmatrix}$, dilanjutkan dengan rotasi pusat $O(0,0)$ sebesar $90^{\circ}$ adalah...
$(A)\ y=-\dfrac{7}{3}x-\dfrac{2}{3}$
$(B)\ y=-\dfrac{7}{3}x+\dfrac{2}{3}$
$(C)\ y= \dfrac{7}{3}x+\dfrac{2}{3}$
$(D)\ y=-\dfrac{3}{7}x+\dfrac{2}{3}$
$(E)\ y=\dfrac{3}{7}x+\dfrac{2}{3}$
Matriks Transformasi, $T_{1}:\begin{pmatrix}
1 & 2\\
0 & 1
\end{pmatrix}$
Matriks Transformasi rotasi pusat $O(0,0)$ sebesar $90^{\circ}$, $T_{2}: \begin{pmatrix}
cos\ 90 & -sin\ 90\\
sin\ 90 & cos\ 90
\end{pmatrix}=\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}$.
Garis ditransformasikan oleh $T_{1}$ dilanjutkan $T_{2}$.
$ \begin{pmatrix}
x'\\
y'
\end{pmatrix}$$=T_{2} \cdot T_{1} \cdot \begin{pmatrix}
x\\
y
\end{pmatrix}$
$ \begin{pmatrix}
x'\\
y'
\end{pmatrix}$$=\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix} \cdot \begin{pmatrix}
1 & 2\\
0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
x\\
y
\end{pmatrix}$
$ \begin{pmatrix}
x'\\
y'
\end{pmatrix}$$= \begin{pmatrix}
0 & -1\\
1 & 2
\end{pmatrix} \begin{pmatrix}
x\\
y
\end{pmatrix}$
$ \begin{pmatrix}
x'\\
y'
\end{pmatrix}= \begin{pmatrix}
-y\\
x+2y
\end{pmatrix}$
dari kesamaan dua matriks diatas kita peroleh;
- $x'=-y$ maka $y=-x'$
- $y'=x+2y$ maka $x=y'+2x'$
Nilai $x$ dan $y$ kita substitusi ke persamaan garis;
$\begin{align}
y & = 3x+2 \\
-x' & = 3(y'+2x')+ 2 \\
-x' & = 3y'+6x'+ 2 \\
-x'-6x'-2 & = 3y' \\
3y' & = -7x' -2 \\
y' & = -\dfrac{7}{3}x' -\dfrac{2}{3}
\end{align}$
Persamaan garis adalah $y' = -\dfrac{7}{3}x' -\dfrac{2}{3}$ dengan menghilangkan tanda aksen $(')$, tanda aksen $(')$ menyimbolkan bahwa garis adalah hasil transformasi.
$\therefore$ Pilihan yang sesuai adalah $(A)\ y=-\dfrac{7}{3}x-\dfrac{2}{3}$
Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan" ___pythagoras
Beberapa pembahasan soal Matematika Dasar Fungsi Kuadrat (👊 Soal Dari Berbagai Sumber 👊) di atas adalah coretan kreatif siswa pada- lembar jawaban penilaian harian matematika,
- lembar jawaban penilaian akhir semester matematika,
- presentasi hasil diskusi matematika atau
- pembahasan quiz matematika di kelas.
Jika Bermanfaat👌 Jangan Lupa Untuk Berbagi 🙏Share is Caring👀
Via : http://www.foldersoal.com
Belum ada Komentar untuk "Matematika Dasar Transformasi Geometri (👊 Soal Dari Berbagai Sumber 👊)"
Posting Komentar